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Elastic anisotropy and the grain size 
dependence of ceramic fracture energies 

R. W. RICE 
Naval Research Laboratory, Washington, DC 20375, USA 

A literature review of fracture energy (3,)-grain size (G) trends of cubic ceramics, and an 
analysis based on adaptation of a model for thermal expansion anisotropy effects are 
made to evaluate effects of elastic anisotropy (EA) on 3,. Although the model does not 
give the specific, typically limited, 3,-G dependences suggested by experimental data, it 
does predict the level of the 3' maxima indicated at intermediate G in some materials, and 
the lower 3, values at large against small G. Further, both of these deviations from con- 
stant 3, are shown to be dependent on crack size and hence consistent with their being 
more frequently and extensively seen with notch beam (NB) as against most other 
measuring methods. 

1. Introduction 
Fracture energies of  ceramics show substantial 
variations which need to be understood in order to 
better apply fracture mechanics and develop 
improved materials. An earlier survey [1 ] indicated 
and recent  experimental evidence [2] shows sub- 
stantial depedence of  fracture energy, 3', on grain- 
size, G, in noncubic materials. The experimental 
data, as well as modelling [3], show 3' relatively 
constant at fine G, then rising to a maximum at 
intermediate G values, e.g. G ~ 0.25 Gs, then sub- 
sequently decreasing, so 3' ~ 0 as G ~ G s where 
G s is the grain size above which spontaneous crack- 
ing occurs due to thermal-expansion anisotropy 
(TEA) stresses. These effects are attributed to 
microcracks being generated at G < G s owing to 
the combined effects o f  TEA stresses and concen- 
trated applied stress in the vicinity of  the crack. 

Similar effects might be expected due to elastic 
anisotropy (EA), which occurs in all materials, 
even those of cubic structure. This paper sum- 
marizes experimental 3`-G data for cubic materials, 
i.e. those not complicated by TEA effects. Then 
the modelling approach used for TEA effects [3] is 
applied to EA. Although involving definite uncer- 
tainties, both data analysis and modelling indicate 
that effects due to EA occur, but generally on a 
scale less than TEA effects (as assumed in develop- 
ing the model for TEA-3` effects). 

2. Experimental data review 
Two experimental observations suggest that EA 
can have detectable effects on the fracture energy 
of cubic materials. First, Wu et  al. [4], in a study 
of  the microstructural nature of  crack propagation, 
observed microcracking, or crack branching quite 
possibly due to microcracking, in the close vicinity 
o f  crack tips in cubic materials, and indicated a 
possible relation of  this to EA. Second, a survey 
[1] and an analysis [5] of  3,--G data show that 
while 3' variations with G in cubic materials are 
generally negligible in comparison with the G- 
dependence of 3' in noncubic materials, there may 
be some 3 ' -G  variations in cubic materials, but 
commonly on the scale of  the data scatter. 

The first 3`-G variation suggested by a review 
of  data for cubic materials is a limited rise of  3' as 
G increases to intermediate values, then a decrease 
at larger G in some cubic materials. Thus, for 
example, Monroe and Smyth [6] have reported 3  ̀
o f  Y203 rising from 4.6 -+ 0.5 J m -2 at fine G, to 
5.1 -+ 0 . 5 J m  -2 at G ~ 25/1m and then decreasing 
to 3.8 -+ 0 . 4 J m  -2 at G > 9 0 # m .  3`-G of various 
investigators for SiC, although more scattered, also 
suggest a possible limited rise and then subsequent 
decrease with increasing G 2 (e.g. Fig. 1). Most 
other 3' data for cubic materials are too limited to 
detect such a trend, e.g. MgAI;O4 data could be 
consistent with such a limited maximum or being 
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Figure I Summary  o f  some of  
the  data on the  f rac ture-energy-  
grain-size relations at room tem- 
perature. 

completely independent of G [2, 5] (Fig. 1). 
Mendelson and Fines' [7] Wustite data show no 
dependence of 3' on G (Fig. 1). However, the easy 
plastic deformation in this material could well 
mask any possible effects of EA, due to the mis- 
match strains being relieved by local slip. At 'fine G 
there is more grain-boundary area in the high-stress 
concentration of the crack tip for significant EA 
mismatch strains than at large G, while slip is more 
restricted by finer G. This trade-off between grain 
boundary area and ease of slip may balance out any 
possible differences between finer and larger G 
bodies. 3`-G for MgO [2, 5], which might also 
have variations limited by slip, is too scattered to 
detect any effects on the scale suggested by the 
above Y203 and SiC data. 

The second, and more extensively suggested, 
3'-G variation in cubic materials is a limited 
decrease of 3' at large G relative to that at fine G. 
Such decreases were often not statistically signifi- 
cant for any one material. However, all o f  the 
cubic materials surveyed, whether they suggested 
an intermediate maximum or not, showed evi- 
dence of such a decrease except FeO and MgO 
(where again local plastic flow could eliminate 
such effects) [2, 5]. Other factors may cause, or be 
involved in, these indicated decreases, e.g. 
impurities, porosity, and stoichiometry second 
phases have been suggested, at least for the more 
extreme decreases [2]. However, results of this 
work suggest that EA can be a factor in such 
decreases. 
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3. Model development and evaluation 
�9 3.1. Microcracking additions to 3' 

The approach used by Rice and Freiman [3] for 
modelling TEA effects will now be applied to EA. 
This approach is based upon Davidge and Green's 
[7] model for formation of spontaneous cracks 
around second-phase particles in a ceramic matrix. 
Their explanation for a critical particle size for 
such cracking was predicted on a balance between: 
(a) the surface-area requirements o f  fracture 
energy to form a crack part of, or all, the way 
around a particle, and (b) the volume dependence 
of strain energy in a particle and the surrounding 
matrix due to the presence of the particle. 

Although Davidge and Green's model was 
originally applied to essentially dilute concen- 
trations of second-phase particles and associated 
mismatch stresses, it has been shown to be applic- 
able to the high concentration of TEA of phase 
transformation mismatch stresses around grains 
in single-phase bodies [9] and hence should also 
be applicable to the treatment of elastic aniso- 
tropy. Using the simplest form of this model, i.e. 
assuming that the differences of Poisson's ratio, 
v, are negligible and that, for simplicity, a single 
average value of v = 0.25 can be used, the con- 
dition for the spontaneous formation of a micro- 
crack is: 

o = (1) 

where o is the stress causing the microcrack, E is 



the average (polycrystalline) Young' modulus, 7B 
is the fracture energy for forming the microcrack 
(generally along the grain boundary), and G is the 
grain size. 

The first o f  three steps in deriving a model of  3' 
utilizing Equation 1 is to assume that an applied 
stress can add to the local grain boundary mis- 
match stresses from EA to possibly cause micro- 
cracking in a region (i.e. process zone) around a 
stressed crack. Such microcracking will limit the 
stress across this zone to an approximately average 
value, Oz, i.e. the applied stress mutliplied by the 
average stress concentration over the microcrack- 
ing zone. Microcracks will thus form when the 
resolved values of  az normal to the boundary com- 
bined with mismatch stresses, Aoz, due to EA 
reach e o f  Equation 1 (typically, only Aaz > 0 
should cause microcracking); i.e. 

a ~< Crz + Aoz. (2) 

This inequality arises because Oz values will be 
lower owing to boundaries not being oriented at or 
near normal to oz and the maximum of  &Oz is 
40% of oz [7].* 

Aaz is readily approximated by the following 
equation: 

a a z  = E(ae)  (3) 

where Ae is the mismatch strain across a grain 
boundary. Since the strain, e~ = E~, where i = 1 or 
2 to represent strains and Youngs' moduli perpen- 
dicular to the boundary between two grains: 

Oz Oz _ az[ AE 1 Ae (4 )  
E 1 E,, ~ E - - ~ ]  " 

On the average E1 = E - -  AE, and E2 = E +  AE, 
where AE is the average of  the absolute E -- E i dif- 
ferences,$ so" 

__  _ azAE AE 
_ oz  (5 )  

where Ae = the average of  the positive (tensile) 
strain mismatches. Using this in Equation 3 gives 
the average zone-mismatch stress: 

azAE 
Aaz (6) 

E 

The second step in the fracture-energy model is 
to calculate the fracture-energy contribution due 
to microcracking as the product of  the number of  
microcracks formed per unit area of  macrocrak 
propagation, N, times the average energy, W, that 
each microcrack absorbs from the applied stress 
field. In direct analogy with the TEA model devel- 
opment:  

otAaa _ O t  

N -  2G2a---~ 2G---- ~ (7) 

where a is a proportionality constant. The factor 2 
in the denominator reflects the fact that on the 
average only approximately half the grains have 
Aaz > 0 to microcrack. Also, in direct analogy 
with the previous work [1], the strain energy 
associated with the formation of  each microcrack 
around a grain is taken as the strain within a vol- 
ume ~ 2G in diameter. In the present case, the 
stress associated with microcracking is simply Oz + 

AOz, SO: 

W = (Oz + Aa~)22nG3 (8 )  
3E 

Then the fracture energy due to microcracking is: 

, , .  = + (9) 

Eliminating the unknowns az and AOz, by the use 
of  Equations 1 and 2, assuming for the present 
that Equation 7 is an equality, gives: 

"),# = 

s i n c e u ~  1 [1]fl 

9aTB(AE) ~ 97B(AE) 
(10) 

(E) E 

Equation 10 clearly satisfies a fundamental 
requirement for the dependence of  microcracking 
on EA, namely that 3'~ = 0 when AE = 0. On the 
other hand, Equation 10 gives 7~ as independent 
of  G, inconsistent with the limited experimental 
evidence discussed earlier. This discrepancy is 
attributed to the more limited stresses from EA 
complicating the modelling based on TEA stresses. 
While these differences cannot be handled quanti- 
tatively, the qualitative differences can be seen. 

*Note that microcracking will prevent a z + AO z from exceeding o of Equation 1. 
~-Note that &E thus depends not just on the maximum E against average E values, but on the complete distribution of 
E values. 
:~In terms of [3], a = a I and M = cqa2 = 2.5 = cq2n/3, so a r = c~ - 1. Also, note that the same functional form of 
Equation 10 would be obtained if one assumed that ~,/~ = NF where r = the total fracture surface energy consumed in 
generating a microcrack part or all of the way around a grain, since ra47rG27B. 
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TEA microstructural stresses are commonly/> 
applied stresses and are independent of the applied 
stress and hence exist throughout the body even in 
the absence of the applied stress. This typically 
makes the assumption of oz ~ constant in the pro- 
cess zone more reasonable and Equation 2 an 
equality. On the other hand the maximum Ao z is 
only 40% of az, and as noted earlier depends 
directly on the applied stress. Since the EA stresses 
occur only at and near grain boundaries it can be 
seen that at fine G the stress concentration may 
not be sufficient to cause spontaneous cracking 
because the stress for this increases inversely with 
G (Equation 1). Therefore Equation 2 may often 
be an inequality rather than an equality at finer G 
as discussed earlier. This would reduce the contri- 
bution of microcracking to 3' at fine G. At large 
G grain boundary cracking is easier (Equation 1), 
so Equation 2 should be an equality. However, 
the spatial extent of the stress concentration 
relative to G is significantly reduced. Thus, the 
actual total area of microcracking and hence the 
contribution of microcracking to fracture energy 
should be reduced at large G. The reduction of EA 
microcracking at fine and large G would thus sup- 
port a rise in fracture energy as G increases, going 
through a maximum and then decreasing with 
continued increase of G. 

While the rise and fall of fracture energy cannot 
be quantitatively addressed by the simple mathe- 
matical development of this model, i.e. by 
Equation 10, this equation should be a reasonable 
approximation for the relative maximum of frac- 
ture energy expected. For most cubic materials, 
AE will typically be < 25%E, and 3'B will typi- 
cally be 1/3 to 1/20 of the fine-grain polycrystal- 
line fracture energy (7pc). Thus, 7** would typi- 
cally be expected to be of the order of 0.57pc or 
less, which is consistent with the data, i.e. possible 
changes suggested by Y203 and SiC are of the 
order of 20% and 50%, respectively, of 3'p~, which 
is taken as the fracture energy at fine G. One can 
look at this somewhat more quantitatively in the 
case of SiC. The elastic anisotropy, i.e. &E/E, is 

7 and 20% respectively for fllO_ and an-SiC 
( 7 - G  data are for bodies ofc~-* or H-SiC, or both), 
and the single-crystal fracture energy (7~) is ~ 6 
J m  -2 [12]. Since 7B should be 50 to 100% of'I'e, 
the maximum of'),u should be between 2 and 12 

*a-SiC has very low thermal-expansion anisotropy [10] 
should not necessarily dominate these variations. 
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J m  -2, i.e. ~ 10 to 50% of Tpe which is in reason- 
able agreement with the data. Reported elastic 
anisotropies of ~ 7% for MgA1204 and UO2 [10] 
would indicate limited effects. Only ~ 2% aniso- 
tropy for MgO [10] could be another reason, 
besides local plastic deformation [4] for no indi- 
cation of changes of 3, with G. 

Unfortunately, more detailed evaluation is 
limited not only by the lack of experimental 7 - G  
data, but also by the limitation of the elasticity 
data. Elastic moduli have been tabulated for a 
number of materials along their major crystal axes 
[10]. However, this covers only a small fraction of 
ceramic materials. Further, the maximum and 
minimum elastic moduli do not necessarily lie 
along these principal axes so such tabulations can 
under- or overestimate the amount of elastic 
anisotropy. Even less is known about the ratio of 
AE/E, e.g. if this ratio either remains constant or 
shows no dependence on E itself, 7** will show no 
dependence on E. If  for example, AE were a func- 
tion of E, then there should be a dependence of 
7** on E, which could be explored as an added test 
of the model. 

3.2. Evaluat ion of  3' t r ends  
Next, consider the third step in the model: deter- 
mining the total fracture energy, 7, i.e. the frac- 
ture energy due to the propagation of a macro- 
crack plus any effects of microcracking. 7** 
accounts for additive effects of microcracking. 
However, there are some negative effects, namely 
that some of the macrocrack propagation occurs 
by its linking with some microcracks, hence reduc- 
ing the energy for actual propagation of the 
macrocrack itself below the fracture energy in the 
absence of microcracking, 7r,~. The ease and 
extent of linking of a macrocrack with micro- 
cracks should increase with G owing to the increase 
in size and density of microcracks with G. Thus, as 
with analysis for noncubic materials [3], 

v - 7~ , c (1  - G/CO + v .  ( 1 1 )  

where G s is the grain size for spontaneous fracture. 
The concept of spontaneous fracture is not as pre- 
cisely applicable to EA as to TEA. The idealized 
end point of such fracture, i.e. where the body is 
totally microcracked so that no energy is required 
to propagate the macrocrack and 7 = 0 at G = Gs, 

which may add to the possible variation of ~ with G, but 



cannot be achieved since cracking from EA always 
requires some application of  stress and hence finite 
external energy for crack propagation. However, 
what is of  interest is the effect of  significantly 
increased microcracking for which Equation 11 
should be suitable. 

Equation 11 clearly shows that 3' would decrease 
with increasing G, since the earlier analysis shows 
3'u to be either constant, or, more likely, to pass 
through a maximum.* It is thus useful to evaluate 
G s to obtain some idea of  the G range over which 
3' would decrease, and to compare this with indi- 
cations of  decreasing 3' with increasing G noted 
earlier. 

From Equations 1, 2 and 6 we obtain 

9E3'B 9E3'B 
G s (O.z + Ao.z)2 - 2[~--~,2. (12) 

~ 
Since 

Oz = KoI  (13) 

where af is the fracture stress and K is a propor- 
tionality constant, i.e. typically the average stress 
concentration in the microcracking zone, and 

t .  'vl[2E \1/2 
o~ = Z ~ - - ~ )  (14) 

where C and Z are respectively the flaw (crack) 
size and geometry factor, Equation 12 becomes: 

93'BC ( ~ f  
Gs ~ 2 K 2 7 Z  2 . (15) 

Since Z 2 ranges from ~ 0.5 (slit crack) to 1.25 
(half-penny crack) [13], 3't3/7 is typically 1/3 to 
1/20, and K~< 1.4, Gs will be of  the order of  
0.1C (E/'A-F2). For -A-E/E ~ 10%, as with mater- 
ials considered here, this means Gs would be of  the 
order of  10C, i.e. ~ 10 times the crack size. Unfor- 
tunately, crack sizes are often not given in such 
tests as the NB test. (Other factors such as the 
notch dep th-wid th  ratio may also be important.) 
However, Equation 15 and the above estimates do 
indicate that there could be important differences 
in the tests used. Thus, double cantilever beam 
(DCB) and double torsion (DT) tests, which 
typically have C much larger than in the NB test, 
may show significantly less variation of  3' with G 
than does the NB test. This is consistent with the 
data since NB tests show more decrease of  3' at 
larger G for any single body than do DCB tests. 

4. Summary and conclusions 
The effects o f  EA on 3' cannot be modelled by the 
method used for TEA in as much detail as effects 
of  TEA. This is attributed to greater sensitivity of  
EA to local stress concentrations. However, overall 
trends of  the model are consistent with data, show- 
ing that effects of  EA are generally substantially 
less than those of  TEA. The model also shows that 
when 7 is effected by EA, these effects will vary 
with the crack size and hence the test method. 
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*In analogy with TEA effects, such a m a x i m u m  would be expected to be at ~ Gs/4. 
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